Obsidian Source	Spectrum	Counts	Model Prep	Results	PCA	Elemental Ratios	Ternary Diagr
Process Data	Plot Spectrum	🕹 Plot					
Choose Spectra							
Browse							
	You can cl	noose d	ata input h	ere.			
• Spectra	either spec	ctra, net	counts, or	r an			
 Net Spreadsheet 	excel spre	adsheet	-				
Project Name							
ObsidianSourcing	5						
Element:							
(Fe) Iron					•		
Load Cal File							
Browse							
Use Cal File							
Import Other Da	ita						

10	7	0	^	4
12	1.	υ.	υ	

C

Obsidian Source

127.0.0.1		Ċ	
Obsidian Source			
3S1716	\$	C Q Search	
Go16.xlsx 4197 PALEORESARCH 4197 PRESARCH.zip 7 7.zip 2 CRAF TBackup 2017 resear4197 easycal resear7 easycal.zip 0 RESEA 900F4168 0 RESE00F4168.zip researc4 Apps7.pdf Jns 095 240 242 716 761	 Pakager 13S1710 Rn.XISX S1-LineLibrary.xrd S1Xbox.csv T3S1716 CAL CERT.pdf T3S1716 Caation Spectra T3S1716 Emperical Cals T3S1716 FILES T3S1716 FILES.zip T3S1716 MudRockV2.xlsx T3S1716 RAOFILE (2).pdf T3S1716 S1N2 FlashCard T3S1716Muck2Light.quant T3S1716Muck2Trace.pdf T3S1716Mu2Trace.quant T3S1716Obsidian.pdf T3S1716Obsidian.quant User Guide,alibrations.pdf 	Document - 305 KB Created November 7, 2017 at 1:41 PM Modified November 7, 2017 at 1:41 PM Last opened Add Tags	
		Cancel Choose	

the .quant calibration file for the instrument we used to take the data

							0
Obsidian Source	Spectrum	Counts	Model Prep	Results	PCA	Elemental Ratios	Ternary Diagram
Process Data	Plot Spectrum	🕹 Plot					
						20	
Choose Spectra							
Browse 96 fil	PC						
Bronse	Uni	oad complete					
	opi					15	
• Spectra							
O Net With	n those loa	aded, we	e can now				
'Pro	cess Data	i' and 'F	lot Spectru	um'			
Droio et Norro						puq	
Project Name						9 9 9 10	
ObsidianSourcing						s per	
						Sount	
Element:						U	
(Zr) Zirconium					-		
						5	
Load Cal File							
Browse T3S1	716Obsidian.qu	lant					
	Upl	oad complete	2				
🗹 Use Cal File						0 -	
Import Other Date	ta					10	

127.0.0.1

Obsidian Source

15

25

20

Energy (keV

			127.0.0.1		Ċ		
			Obsidian Sourc	e			
Obsidian Source Spectrum	Counts Model Prep Results PCA Ele	mental Ratios	Ternary Diagram				
	A	All Data Add	Categories				
Enter Values 🕹 Table	Sho	ow 10 🗘 entr	ies				Search:
			Sampla		Ph 🔺	Sr 🔺	V Å
Elemental lines to show:			Sample	▼	KD 🖤	Sr 💌	T W
As	Novigato to 'Counte' then coloci	t tho	001		100	58	22
Ba	alements to use Rh Sr V and	7r	002		107	49	24
	are best for Obsidian		003		96	65	23
			005		50	05	23
🗆 Fe	4		004		95	64	22
🗆 Ga	5		005		93	61	20
□К	6		006		91	58	21
Mn Nh	7		007		20	57	22
Rb			007		99	57	22
Sr	8		008		103	63	24
□ Th	9		009		87	60	23
🗆 Ti	10	0	010		104	64	20
		0	010		104	04	20
✓ Y	Sho	owing 1 to 10 of 9	96 entries			Previous 1 2	2 3 4 5
 Z∩ Zr 							

Ð		ᠿ			ć	נו	
						-	⊢
			_	_	_	_	_
					Zı	r	ł
					Ç	96	
					ç	91	
					1()1	
					9	98	
					9	96	
					ç	96)
					9	96	
					1()2	
					ç	92)
					1()3	
	10			N	e>	ĸt	

Obsidian Source Spectrum	Counts Model Prep	Results PCA	Elemental Ratios	Ternary Diagr
Algorithm # sensitivity). variation for	1: Remove A Model S r all elemer	e all so ensitiv nts (Rb	ity of 0. Srn	hat ar 15 m) are i
Latitude Maximum				
Longitude Minimu -180 Longitude Maximu 180	ithm #2: D ents, asses	etermi ss t-val	ne goo ue (hig	dness her is
Model Sensitivity				
0.15 Use Lat/Long as Prior Limit to Complete Source Data Choose Samples ✓ 001 ✓ 002 ✓ 003 ✓ 004 ✓ 005 ✓ 006 ✓ 007	Algorithm distance a	#3 (op as a pr	otional): ior and	Asse the p

re within a threshold (e.g. leans all sources outside 15% rejected

s-of-fit between relative variation of trace better) and p-value (lower is better)

Ċ

ess Bayesian posterior probability using o-value from Algorithm #2 as new data

9	đ	D
		+

	127.0.0.1	Ċ
	Obsidian Source	
Obsidian Source Spectrum Counts Model Prep	Results PCA Elemental Ratios Ternary Diagram	
Download Define Region	Subsets Data Select Select Select Image: Vertical description of the select Select Select Image: Vertical description of the select Image: Vertical description of the select Select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical description of the select Image: Vertical	
Lat/Long		f) You can also subset by qualitative
Latitude Minimum	In 'Model Prep', we choose:	information you provide for the sampl
-90	a) The region to use for possible sources	such as site, level #, etc.
Latitude Maximum	(lat/long or political boundaries)	
90		
Longitude Minimum	b) Model Sensitivity - how sensitive to make the model? Higher means more	
-180	© selective fingerprinting, but a risk of	
Longitude Maximum	missing important sources	
180		
848	c) Bayesian or standard - by using Lat/	
	Longs as a prior, the model will assume	
Model Sensitivity		
0.15		
Use Lat/Long as Prior	a) Limit to Complete Source Data	- hat
Limit to Complete Source Data	don't have full elemental data (e.g	
Choose Samples		
 ✓ 001 ✓ 002 		
 ✓ 002 ✓ 003 	e) vvnich data to use? You	can exclude
☑ 004	Samples here if you want to	
✓ 005		
 ✓ 006 ✓ 007 		
V 007		

Ð		ᠿ	J	
				+
		٦		
es	,			

	127.0.0.1
	Obsidian Source
Obsidian Source Spectrum Counts Model Prep Results PC	CA Elemental Ratios Ternary Diagram
	Subsets Data
🕹 Download	
Define Region	Select Select Select Select
Political	
Lat/Long	
Continent	
Region	
Political	In this case, we will use political
	boundaries to define the possible sources
Nevada Oregon Utah Washington Wyoming South Dakota Texas	our artifacts have come from
227	
Model Sensitivity	
0.15	
Use Lat/Long as Prior	
Limit to Complete Source Data	
Choose Samples	
✓ 001	
 ✓ 002 ✓ 003 	
$\mathbf{\nabla}$ 003	
 ✓ 004 ✓ 005 	
 ✓ 006 	
✓ 007	
✓ 008	
✓ 009	
☑ 010	
✓ 011	
✓ 012	
✓ 013	

Ð	ᠿ	Ó]
			+

Obsidian Source	Spectrum	Counts	Model Prep	Results	PCA	Elemental Ratios	Ternary Diag
La Download						Subsets D	ata
Define Region						Select	Select
						HOLD	HOLD
Political				•			
Choose Country							
USA							
Choose State/Provence							
Arizona Colorado Ic	daho Montana	New Mexic	o Nevada Ore	gon Utah			
Washington Wyomir	ng South Dako	ta Texas					
Alaska							
California							
Model Sensitivity							
0.15				(~			horo t
0.15				9	0		
Use Lat/Long as Price	or						
Limit to Complete So	ource Data						
- ,							
Choose Samples							
. 001							
V 002							
V 003							
✓ 004							
0 05							
006							
✓ 007✓ 008							
 ✓ 010 							
✓ 011							
0 12							
✓ 013							

127.0.0.1	
Obsidian Source	+
am	
Select Select	
HOLD HOLD	

an add/remove states and provinces of further narrow the scope

127.0.0.1		Ċ	
Obsidian Source			+
am			
Select	Select		
HOLD	HOLD		

The Model Sensitivity is defaulted to 0.15, but for the Western US a model fit of 0.05 is best

127.0.0.1	<u> </u>	
Obsidian Source		
am		
tifacts Source Map		
e ready to run the model, e 'Results' page		

While the model is running, 'Processing Data' will be visible in the lower-right corner of the screen

Ð	ᠿ	Ó]
			+

×

9 Obsidian Butte Variety 5

127.0.0.1

Obsidian Source

Source Map

				Search:
Total 🌲	Percent 🔷	Latitude 🔶	Longitude 🔷	Description
40	41.7%	42.669	-120.371	"Coglan Butte obsidian has a purple sheen to it, and is found to the we Albert, Oregon (Moore 2009)."
14	14.6%	37.327	-116.842	"The Obsidian Butte Volcanic Complex contains several well known sub- including Crow Spring, Silver Peak, the Montezuma Range, Shoshone M Tempiute Mountain, as well as Obsidian Butte. Obsidian Butte is a blac slightly translucent obsidian featuring distinct banding, spherulites, an (Haarklau et al 2005)." "The Obsidian Butte Volcanic Center was comm- point manufacturing spanning the entire prehistory of the Great Basin Desert (Haarklau et al 2005)."
11	11.5%	44.16	-118.64	
8	8.3%	44.313	-118.606	"High quality obsidian correlated with the Whitewater Ridge source gro from many different widely distributed source localities found along the margins and hills immediately south of Bear Valley' (Skinner and Thatco "Prehistoric use of the Whitewater Ridge source was very extensive, per than any other source in northeast Oregon' (Skinner and Thatcher 200
6	6.2%	37.303	-116.846	"The Obsidian Butte Volcanic Complex contains several well known sub- including Crow Spring, Silver Peak, the Montezuma Range, Shoshone M Tempiute Mountain, as well as Obsidian Butte. Obsidian Butte is a blac- slightly translucent obsidian featuring distinct banding, spherulites, an (Haarklau et al 2005)." "The Obsidian Butte Volcanic Center was comm- point manufacturing spanning the entire prehistory of the Great Basin Desert (Haarklau et al 2005)."
5	5.2%	41.753	-119.462	"Badger Creek obsidian is blue-grey, and sometimes green. It is found a southeast of Bitner Butte, Nevada (Moore 2009)."
3	3.1%	43.372	-119.689	
2	2.1%	41.606	-119.513	"The source of Coyote Spring use was highly localized to the High Cour northwest Nevada. The material is not a true obsidian source, and it co fine-grained volcanic rock (LaValley 2013)."
2	2 1%	37 366	-116 866	"The Obsidian Butte Volcanic Complex contains several well known sub including Crow Spring, Silver Peak, the Montezuma Range, Shoshone M Tempiute Mountain, as well as Obsidian Butte. Obsidian Butte is a blac slightly translucent obsidian featuring distinct banding, spherulites, an

C

Obsidian S	ource	Spectrum	Counts	Model Prep	Results	PCA	Elemental Ratios	Ternary Diagr
🕹 Excel	🕹 Raw	🕹 Мар					Summary Table	e Sourced Art
🗌 Adjust Ma	p						Sa	mple
							1 001	
							2 002	
							3 003	
							4 004	
							5 005	
	On the	e 'Source	d Artifad	cts' page. v	vou can		6 006	
	see th	ne elemen	tal data	and most-	likely		7 007	
	source	e attributi	on for e	ach artifact			8 008	
							9 009	
							10 010	
							11 011	
							12 012	
							13 013	
							14 014	
							15 015	
							16 016	
							17 017	
							18 018	
							19 019	
							20 020	

Sou	rce	Ma

127	.0.0.1			Ċ			
Obsidia	n Source						+
ram							
ctifacts	Source Man						
liacts	Source Map					Search:	
		Dh.	C =	× •	7	Secure .	
V		KD 🖤	Sr 🖷	ΥΨ	Zr ⊎	Source	v
	8	100	58	22	96	Coglan.Buttes	
	8	107	49	24	91	Obsidian.Butte.Variety.3	
	8	96	65	23	101	Obsidian.Butte.Variety.4	
	9	95	64	22	98	Coglan.Buttes	
	9	93	61	20	96	Coglan.Buttes	
	9	91	58	21	96	Coglan.Buttes	
	9	99	57	22	96	Coglan.Buttes	
	8	103	63	24	102	Obsidian.Butte.Variety.4	
	8	87	60	23	92	Obsidian.Butte.Variety.4	
	8	104	64	20	103	China.Lake	
	9	86	60	23	99	Glass.Buttes.7	
	9	98	60	25	99	Whitewater.Ridge	
	8	110	50	25	90	Obsidian.Butte.Variety.3	
	8	99	60	23	95	Coglan.Buttes	
	8	99	60	22	96	Coglan.Buttes	
	8	108	47	27	92	Wolf.Creek	
	9	93	63	23	97	Obsidian.Butte.Variety.4	
	9	95	59	20	94	Coglan.Buttes	
	8	98	47	21	88	Wolf.Creek	
	8	95	63	20	96	Coglan.Buttes	
	Q	95	61	10	05	Badger Creek	

- Badger.Creek
- Bear.Springs.Peak
- Buck.Mountain
- Coyote.Spring
- Glass.Buttes.6
- Glass.Buttes.7
- Obsidian.Butte.Variety.2
- Obsidian.Butte.Variety.3
- Obsidian.Butte.Variety.4
- Paliza.Canyon
- Paradise.Ridge.2
- Redondo.Peak
- Warner.Mountains.Group.General
- Whitewater.Ridge
- Wolf.Creek

Ð	ſ	Ì	Ó]
				+

Ð	ſ	Ì	Ó]
				+

\leq		

Colour

Source

Point Size

Sources to Plot

🗹 Elipse

📥 Plot

Log Transform

🕹 Results

2

Obsidian Source	Source Spectrum		Spectrum Counts Model Prep Re		PCA	Elemental Rati	os Ternary Diagra
K-Means						PCA Plot	Table

12

10

8

Badger.Creek Buffalo.Hills China.Lake Coglan.Buttes Coyote.Spring

Glass.Buttes.6 Glass.Buttes.7 Glass.Buttes.Group.General Grouse.Hill

South.Sauceda.Mountains Whitewater.Ridge Wolf.Creek

Obsidian.Butte.Variety.3 Obsidian.Butte.Variety.4 Obsidian.Butte.Variety.5

Ŷ

 \bullet

15

14 15

200

100

0

-100

-100

Principle Component 2

On the 'PCA' page, you can do traditional PCA analysis - the possible sources are ellipses (optional) and the data can be colored by source, cluster analysis, or qualitative attributes (site, layer, etc.)

127.0.0.1

Obsidian Source

0

C

200

100

Principle Component 1

Obsidian Source Spectrum Counts **Elemental Ratios** Ternary Diagram Model Prep PCA Results

Obsidian Source

C

Ê O

+

1	27.	0.	0.′	1
	- / •	٠.	•••	•

Obsidian Source	Spectrum	Counts	Model Prep	Results	PCA	Elemental Ratios	Ternary Diagra
Ratio Plot Type							
Source				•			
Element A						400	
Zr				•		400	
Element B							
None				•			
Element C							
Sr				•		ر م	
Element D						0,	
None				•		$\langle \langle \rangle$	
							5
Point Size							
2					15	0	<
2 4	6 8	1 1 1 10) 12	14 1	5		
Sources to Plot							
Coglan.Buttes Obsidi	ian.Butte.Varie	ty.3 Obsidia	an.Butte.Variety.4	1			
China.Lake Glass.But	tes.7 Whitewa	ater.Ridge	Volf.Creek Badg	er.Creek			
Grouse.Hill Glass.But	ttes.Group.Gen	eral Coyote	e.Spring Buffalo	.Hills			
Obsidian.Butte.Variety	y.5 South.Saud	ceda.Mounta	ains Glass.Butte	s.6			
X axis							
86				1	28		

86 91 96 101 106 111 116 121 126

Y axis

Obsidian Source Counts Spectrum Model Prep PCA **Elemental Ratios** Results Ternary Diagram Ratio Plot Type Focus \mathbf{T} Choose Variable Source \mathbf{T} 400 Choose Focus Coglan.Buttes Choose Label None \bullet 200 S Element A Zr \bullet Element B None \mathbf{T} Element C Sr \bullet Element D None \bullet Point Size 2 15 10 12 14 15 Sources to Plot Coglan.Buttes Obsidian.Butte.Variety.3 Obsidian.Butte.Variety.4 China.Lake Glass.Buttes.7 Whitewater.Ridge Wolf.Creek Badger.Creek Grouse.Hill Glass.Buttes.Group.General Coyote.Spring Buffalo.Hills

Ċ

• <u>1</u>

Obsidian Source

--- Glass.Buttes.Group.General -- Obsidian.Butte.Variety.3 --- Obsidian.Butte.Variety.4 --- Obsidian.Butte.Variety.5 --- South.Sauceda.Mountains --- Whitewater.Ridge

$\overline{}$	 E	

Obsidian Source	Spectrum Co	ounts Model Prep	Results	PCA	Elemental Ratio	s Ternary Diagram					
Ratio Plot Type Focus			•								
Choose Variable											
Choose Focus			•		400						
Coglan.Buttes						and sh	low which sam	ples belong to	o it		
Choose Label			•								
·					²⁰⁰ ਨ						
Element A Zr			•			020 041 049	004 048	-037-			
Element B						039 052 054 091 014 032	088 034	035			
None Element C			•		0(018 043 015 075 031	077	<u>-023</u> >			
Sr			•			006 007	053				
Element D			•								
						1	00	15	50	200	250
Point Size	6 8	10 12	1 1 1 1 1	15					Zr		
Sources to Plot											
Coglan.Buttes Obsid China.Lake Glass.Bu	lian.Butte.Variety.3 ttes.7 Whitewater.	Obsidian.Butte.Variety Ridge Wolf.Creek Bac	/.4 dger.Creek								

File Home Insert Page Layout Formulas Data Review View Add-Ins Team

	A1	▼ (*	<i>f</i> ∗ Specimen													
	CA	СВ	CC	CD	CE	CF	CG	СН	Cl	CJ	СК	CL	CM	CN	CO	СР
1	Clayton.Ridge	Cleetwood	Cleman.Mountain.Tachylyte	Cloudcap	Cloverdale.Canyon.A	Cloverdale.Canyon.B	Coal.Bank.Spring	Cochetopa.Dome	Coglan.Buttes	Cold.Point	Conant.Creek	Conant.Pass	Copper.Ridge.A	Copper.Ridge.B	Copper.Ridge.C	Copper.Ridge.D
2	0.7507	,							0)			0.5947			
3		0.8628						0.5166	0.0041	-						
4	0.7842	0.8349							0.0044	ļ			0.5017	,		
5	0.7841								0.0006	5			0.5086			
6	0.7807	,							0.002	2			0.5198			
7	0.7813								0.0003	}			0.3838			
8	0.7446								0.0001				0.5589			
9	0.7761	0.8528						0.6937								
10		0.8287							0.0092	2			0.5069			
11	0.8019															
12	0.5727	0.5752							0.5206	5			0.5455			
13	0.7311	0.7892						0.6671	0.0166	5			0.5637			
14		0.8771						0.502	0.0029)						
15	0.7353	0.806							0)			0.6038			
16	0.7341								0)			0.5723			
17				0.8173					0.0691							
18	0.7774	0.8286							0.0053	8			0.5221			
19									0.0002	2			0.5967			
20	0 7045												0.6071			
21	0.7815) ,							0.0006				0.5649			
22	0.7337	0.0007						0 7 4 7 0	0.0074	•			0.5801			
23	0.70	0.8027						0.7478	0.0003	\			0.4279			
24	0.78								0.0002	<u> </u>			0.5404			
25	0.7064	0.8266							0.058	5 N			0.5447			
20	0.7787	0.8366							0.0052				0.4829			
27	0.7638	0.8222							0.0036				0.5248			
20		0.8654						0 7/92					0.0094			
29								0.7462	0.0562)			0.562			
21	0 7852								0.0303				0.565			
37	0.7852	0.8							0.0001	-)			0.5003			
32	0.7177	0.8		0 8231				0.6167	0.0001				0.5578			
34	0 7302	0 7685		0 7249				0.0107	0.0001	- {			0 5444			
35	0 7694	0.8325		0 7875					0.0006	5			0 4631			
36	0.7165	0.7935		0.7070					0.0000)			0.5835			
37	0.7891								0.0028	8			0.3537	,		
38	0.7713								0)			0.572			
39	0.7731												0.5734			
40						To see	other poss	ible source	s, vou car	า 📘			0.6157	,		
41	0.7259)				luce the			doboot vu	hich			0.5939			
42	0.7445	,				luse the	e downioad	able spread	usneet, wi				0.5856			
43	0.7941					lin the -	-values tab	o shows the	e significa	nce 🗌			0.4846			
44	0.7611	0.8314		0.7994									0.578			
45	0.7379					lot each	i source att	indution wit	nin the				0.5831			
46				0.8147		model'	s sensitivitv	,								
47	0.7182	0.7674											0.6031			
48	0.7747	0.8365						0.7007	0.0019)			0.5453			
	► ► Summarv	/ Parameter	s /T-Value /r-Value p-Value	Overlap 🥀	2/							III				

📕 🔹 🕨 🛛 Summary / Parameters / T-Value / r-Value / **p-Value** / Overlap / 😭 /

Ready

